CVCTD-General iPSC cellwork

Category	
Author	Laura Rabaut
Version	3
Labels: iPSC	Thawing Freezing Coating Matrigel Picking Passaging
Introduction	

This is an overview of all protocols used on a daily basis when working with iPSCs.

Volumes and amounts

	10cm dish	6-well plate	12-well plate	24-well plate
Matrigel	5 ml	1 ml	750 µl	300 µl
Medium	9 ml	2 ml	1 ml	500 µl
dPBS/EDTA _{0,5mM}	1.5 ml	1 ml	750 µl	500 µl
Number of cells	+- 1x10^6	+- 200K	+- 70K	+- 40K

Material and Reagents

Material

- Water bath
- 15mL conical tubes
- 50mL conical tubes
- 1,5mL Eppendorf tubes
- Centrifuge
- Cell culture plates: 24-well plates, 12-well plates, 6-well plates
- Cell culture 10cm dishes
- Cryovials
- Labels
- Leica cell counter
- Mr.Frosty
- Ice

- Parafilm
- Microscope

Reagents

- Matrigel (Corning; cat. 354277)
- E8 Flex medium (ThermoFisher; cat. A2858501)
 - Add 1mL E8 Flex supplement (1 aliquot) to 50mL E8 medium
 - Add 150µL P/S to complete the supplemented medium
- dPBS/EDTA_{0,5mM}
- dPBS (ThermoFisher; cat. A14190144)
- Acridin Orange (Westburg; cat. LB F23002)
- KSR + 10% DMSO (ThermoFisher; cat. A3181501)
- RevitaCell (ThermoFisher; cat. A2644501)
- DMEM/F12 (ThermoFisher; Cat. 31330038)
- Dettol
- 70% ethanol
- Umonium

Thawing iPSCs

Material and Reagents

- Water bath
- 15mL conical tube
- Centrifuge
- 6-well plate coated with Matrigel
- E8 Flex medium
- RevitaCell

Protocol

- 1. Pre-warm the water bath to 37°C
- 2. Prepare a 15ml conical tube with 6ml of E8 medium at room temperature
- 3. Take the cells out of the liquid nitrogen stock and transfer them on ice to the cell lab
- 4. Immerse the cryo-vial with the cells in the water bath for up to 30s until the ice melts a bit, but not entirely
- 5. Spray the vial with 70% ethanol and transfer it under the flow

- 6. Add dropwise small amount of E8 medium from the prepared medium to the cells
- 7. Transfer the cells dropwise (to avoid osmotic shock) into the 15mL conical tube with E8 medium
- 8. Spin the tube down at 120g for 5 minutes at room temperature
- 9. Aspirate and discard supernatant
- 10. Very gently resuspend the cells with 1mL fresh medium
- 11. Remove the Matrigel suspension from the 6-well plate, and add 1mL fresh medium per well
- 12. Slowly add the cell suspension dropwise to the wells, spreading it evenly on a whole well
- 13. Add 20µl of RevitaCell supplement for each 2ml of medium (10% RevitaCell)
- 14. Gently mix the culture by shaking the plate in 8-like movements
- 15. Put the plate in the incubator (37°C, low oxygen if possible) and shake again the plate in 8-like movements
- 16. Change the medium after 24 hours

Coating with Matrigel

Material and Reagents

- Eppendorf tubes 1,5mL
- Labels
- Ice
- Plates/dishes for cell culture
- Parafilm
- 50mL conical tube
- Matrigel
- DMEM/F12

Protocol

Aliquot Matrigel

- 1. Thaw the bottle Matrigel overnight on ice in the fridge
- 2. Check at teh Corning website for the correct amounts per aliquot:

https://www.corning.com/worldwide/en/products/life-sciences/resource-library.html

- 3. Put the Eppendorf tubes on ice
- · Write MG on top and give each tube a label with expiration date and lot number
- 4. Aliquot the Matrigel solution
- 5. Store the aliquots at -20°C

Coating with Matrigel

- 1. Take the Matrigel aliquot out of the freezer and put it on ice to thaw
- 2. Fill a 50mL conical tube with 25 mL of cold DMEM/F12 medium

3. Add a bit of the DMEM/F12 medium to the Matrigel aliquot to speed up thawing, then add the mixture to the 50mL conical tube and pipette up and down to mix it properly

- 4. Immediately use the dilution to coat culture plates
- 5. Use the amount given above in the table
- 6. Spread the dilution evenly on a the wells by making 8-like movements

7. If the plates are not used immediately – seal the plate with Parafilm to prevent dehydration and store in the fridge for up to 7-14 days with date of preparation written on the parafilm

- 1. It is also possible to keep the 50mL conical tube with Matrigel in the back of the fridge seeled with a Parafilm
- 8. Incubate in 37°C for 1 hour before use
- 9. Before seeding the cells, aspirate the Matrigel dilution

Tips for picking

Colony picking

- · Colonies will pop up 10 to 20 days after transduction
- · Look for nice shaped (not spicky) colonies
- Pick from the original 6-well plate and transfer to a well in a 24-well plate (one colony per well)
- Name your colony eg: 1.1 if this is the first colony you picked from the first well
- · Add 10% RevitaCell to each well to promote attachement of the cells
- · Change medium 24h after picking a colony to remove the RevitaCell
- You should eliminate wells older then 9 days if no colonies can be picked
- Make 8-like movements before and after placing your cells in the incubator to spread the cells evenly in the well

iPSC passaging

Material and Reagents

- Plate or dish coated with Matrigel
- dPBS
- dPBS/EDTA_{0,5mM}
- E8 Flex medium
- RevitaCell

Preparations

dPBS/EDTA_{0,5mM} ► Add 53µL EDTA_{0,5M; pH8} to 50mL dPBS

Protocol

- 1. Prepare Matrigel coated dish an hour beforehand
- 2. Discard the old medium
- 3. Wash with dPBS and discard it
- 4. Add dPBS/EDTA_{0,5mM} to each well
- See above for the amount of dPBS/EDTA_{0.5mM} needed
- 5. Incubate for 4 minutes or look at large colonies under the microscope until holes appear in the middle
- Incubation with dPBS/EDTA_{0.5mM} up to 7 minutes if colonies don't loosen easily
- 6. Aspirate and discard the dPBS/EDTA_{0.5mM}
- 7. Add 1 or 2 mL of fresh E8 Flex medium directly onto the cells and wash the cells out gently
- 8. Remove Matrigel from the wells/dish
- 9. Collect the cells
- 10. Wash the plates again with fresh E8 Flex medium to collect all the remaining cells
- 11. Add extra E8 Flex medium to the total volume needed for this well
- 12. Add 10% RevitaCell
- 13. Make 8-like movements with the plate to divide the cells evenly in the wells
- 14. Put back in the incubator and gently shake plate again in 8-like movemnets before closing the incubator
- 15. Change medium after 24h to remove RevitaCell

iPSC validation

Set 3 good clones for validation by expanding to 4x 10 cm dishes

These dishes should be used for:

- 1. DNA extraction > SNP array: CNV analysis and identity check
- +/- 2,5-3x10^6cells or 1/2 10cm dish
- Spin the cells down at 120g for 5 minutes at RT, remove medium and store the pellet at -20°C

2. RNA extraction ► SeV test, qPCRs

- 1. +/- 2,5-3x10^6cells or 1/2 10cm dish
- 2. Spin the cells down at 120g for 5 minutes at RT, remove medium, add RNA lysis buffer and store at -80°C
 - 1. 300μ L RNA lysis buffer for < $5x10^{6}$ cells
 - 2. 600µL RNA lysis buffer for > 5x10^6 cells

- Follow protocol Quick-RNA™ Miniprep Kit ZYMO for RNA extraction
- Follow protocol First strand cDNA Synthesis for cDNA synthesis
- 3. Staining for Tra1-60, Tra1-81, Oct3/4, Nanog, Sox2 ► Validation pluripotency marker expression
 - 1. 100.000 cells/well in a 24-well plate with cover slips and Matrigel
 - 2. Follow protocol Immunocytochemistry staining iPSC's
- 4. Trilineage **differentiation** ► differentiation potential
- 5. Freeze 2 vials and seed the rest for expansion to freeze down in a second step

Note:

- Choose clones to validate from different reprogramming events (= different starting numbers)
- Add all clones to the iPSC-database

Freezing iPSCs

Material and Reagents

- Cryovials
- Labels
- Leica cell counter
- Centrifuge
- 15mL conical tube
- Mr.Frosty freezing container
- dPBS
- dPBS/EDTA_{0,5mM}
- E8 Flex medium
- Acridin Orange
- KSR + 10% DMSO

Protocol

1. Label the cryo-vials with cell line, passage number (same as the one on a plate), freeze date, your initials and a vial number (V1/2/3/...)

1. iPSC_disease_gene_patientID_PBMC_CxPx

- 2. Use the 'serial' bottom on the label printer to add a vial number
- 3. Give a vial number to each vial frozen down from the same cell line (same passage, date...) so it is easier to find samples back
- 2. Put the prepared vials on ice under the hood
- 3. (Remove differentiated cells from the cell culture you want to freeze if necessary using the picking tool or a 100µL pipette)
- 4. Discard culture medium from the plate, wash with PBS
- 5. Add PBS/EDTA_{0.5mM} for 4 minutes (1,5mL for 10cm dish)
- 6. Aspirate the PBS/EDTA_{0.5mM} and discard it
- 7. Dispense 2ml of medium over the plate, collect cells by washing them out
- 8. Collect cells in a 15ml tube
- 9. Wash the plates with fresh medium to collect all the cells (10cm dish: up to 4/5ml of medium in total)
- 10. Take 18µl of cell suspension into an Eppendorf tube to count the cells, +2µl of Acridine Orange
- 1. Turn on the Luna Dual Fluorescence cell counter Select Fluorescent measurement
- 2. Load the correct protocol (iPSC = default)
- 3. Put 12µl in the counter slide
- 4. Focus on 2x magnification
- 11. Count cells, write down Total amount /ml + Life amount /ml. Proceed with life count
- 12. Freeze down 1,5-2 million cells/vial
- 13. Spin cells down at 120g for 5 minutes at room temperature
- 14. Re-suspend the cells in freezing medium (90% Knock-out SeRum + 10% DMSO)
- 15. Distribute 1ml of cell suspension to each vial
- 16. Quickly place vials on ice and transfer them into the freezing container with isopropanol
- 17. Place the freezing container in -80°C freezer for minimum 4 hours
- 18. Transfer the vials to liquid nitrogen storage

Attachments

No file attachments

This procedure was originally created by Gerarda van de Beek

