

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Multiple Cell Lines

Generation of two human iPSC lines with Exon 3 mutations in BCL2-Associated Athanogene 3 (*BAG3*) from dilated cardiomyopathy patients

Peter-James H. Zushin^{a,b}, Yang Zhou^{a,b}, Audrey Li^{a,b}, Euan A. Ashley^{b,c}, Matthew T. Wheeler^b, Joseph C. Wu^{a,b,d,*}

^a Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA

^b Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA

^c Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA

^d Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA

ABSTRACT

Dilated cardiomyopathies (DCM) are one of the main causes of heart failure as one ages. BAG3 is a chaperone protein that is heavily implicated in the development of DCM and speed of progression toward heart failure. Here we generate two human iPSC lines from individuals with mutations in exon 3 of BAG3 and provide validation of their pluripotency and ability to differentiate toward the three primary germ layers. These two cell lines can help our understanding of BAG3 and its role in DCM by providing a good model for BAG3 inactivation and insufficiency.

Unique stem cell line identifier	1. SCVIi073-A 2. SCVIi074-A	(continued)	
		Unique stem cell line identifier	1. SCVIi073-A
Alternative name(s) of stem cell line			2. SCVII074-A
Institution	Stanford Cardiovascular Institute Stanford, CA	Gene/locus	BAG3, Exon 3 (10q26. 11) SCVIi073-A: Homozygous at p.Tyr233Ter
Contact information of the reported cell line distributor	Joseph C. Wu, joewu@stanford.edu		(c.699C > A); Heterozygous at p. Ala262Thr $(c.784G > A)$
Type of cell line	iPSC		SCVIi074-A: Heterozygous at p.
Origin	Human		Ser185Leu (c.554C > T)
Additional origin info	Age: 60 (SCVIi073-A) / 71 (SCVIi074-A)	Date archived/stock creation date	SCVIi073-A: 12/8/2020
(applicable for human ESC or iPSC)	Sex: Female		SCVIi074-A: 12/7/2018
	Ethnicity: White		
Cell Source	PBMC	Cell line repository/bank	https://hpscreg.eu/cell-line/SCVIi073-A
Method of reprogramming	Nonintegrating Sendai virus expression of		https://hpscreg.eu/cell-line/SCVIi074-A
	human OCT4, SOX2, KLF4, and c-MYC	Ethical/GMO work approvals	The generation of the lines was approved
Clonality	Clonal		by the Administrative Panel of Human
			Subjects Research (IRB) under IRB
Evidence of the reprogramming transgene loss (including genomic copy if applicable)	RT-qPCR		#29904 "Derivation of Human Induced Pluripotent Stem Cells"
Type of the Genetic Modification	Spontaneous/naturally occurred mutation		
Associated disease	Dilated cardiomyopathy (DCM)	1. Resource utility	
	(continued on next column)	The generation of these two	induced pluripotent stem cell (iPSC)

Abbreviations: CM, Cardiomyopathy; DCM, Dilated Cardiomyopathy; BAG3, BCL2-Associated Athanogene 3; iPSC, Induced Pluripotent Stem Cell.

https://doi.org/10.1016/j.scr.2023.103019

1873-5061/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

lines will allow investigators to generate an unlimited number of

^{*} Corresponding author at: Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.

E-mail address: joewu@stanford.edu (J.C. Wu).

Received 20 December 2022; Accepted 3 January 2023 Available online 5 January 2023

cardiac-specific cell types that will aid in the characterization of the role BAG3 plays in the development and progression of a large subset of DCM.

2. Resource details

Cardiomyopathies (CM) are one of the major causes of heart failure as one ages, with prevalence among different ethnic groups ranging from 20 to 45 % after age 45 (Tsao et al., 2022). Dilated cardiomyopathy (DCM) is a subtype of these diseases, characterized by an enlarged left ventricle with decreased contractile capability. According to GWAS, a strong genetic component may underlie the speed at which people begin to present with progressively worsening symptoms, eventually leading to heart failure (Garnier et al., 2021). BAG3 was initially described as a HSP70 cofactor but is now known to be an important mediator of Z-disc stability through interactions with the CapZ actin-capping protein (Martin et al., 2021). BAG3-mediated CM make up roughly 50% of the cases of DCM in patients younger than 20, and greater than 74% in patients older than 40, with earlier prognosis in males more than females (Dominguez, 2018). After diagnosis, BAG3-mediated CM have a yearly risk rate of 4.7% for heart failure-related events (Dominguez,

Table 1

Characterization and validation.

2018). Here we describe the generation of two iPSC lines created from female patients with mutations in Exon 3 of BAG3. Our findings will be useful for future investigations into the effects of functional BAG3 depletion or absence on the development and progression of DCM (seeTable 1).

Two human iPSC lines (SCVIi073-A and 74-A) were generated from peripheral blood mononuclear cells (PBMCs) of two White females (ages 60 and 71) evaluated in the clinic for early signs of heart failure. SCVIi073-A contains two notable mutations in exon 3 of BAG3: a homozygous c.699c>A (p.Tyr233Ter) and heterozygous c.784G>A (p. Ala262Thr), both characterized as likely disease-causing by the Stanford Center for Inherited Cardiovascular Disease (SCICD). SCVIi074-A contains heterozygous mutation in exon 3, c.554C>T (p.Ser185Leu) listed as uncertain significance in ClinVar. PBMC reprogramming was performed using a non-integrating Sendai virus containing Yamanaka factors. Both lines exhibited similar, normal, morphology (Fig. 1A) with brightfield microscopy (black scale bar $= 180 \mu m$). Additionally, both iPSC lines showed robust expression of pluripotency markers SOX2 (green), NANOG (red), and OCT3/4 (magenta) (white scale bar = 130µm) (Fig. 1A). This data was replicated with qPCR, showing increased SOX2 and NANOG expression over a differentiated control though not as

Classification	Test	Result	Data
Morphology	Photography	Normal	Fig. 1A
Pluripotency status evidence for the described cell line	Qualitative analysis -Immunocytochemistry	Positive expression of pluripotency markers: SOX2, NANOG. OCT3/4	Fig. 1A
	Quantitative analysis (i.e. Flow cytometry, RT-qPCR)	SOX2 and NANOG expression from RT-qPCR	Fig. 1B
Кагуотуре	Karyotype	KaryostatTM Assay, resolution 1–2 Mb Normal karyotype 46, XX for both lines	Fig. 1E
Genotyping for the desired genomic alteration/allelic status of the gene of interest	PCR across the edited site or targeted allele-specific PCR	PCR + Sanger sequencing	Fig. 1D
-	Evaluation of the - (homo-/hetero-/ hemi-) zygous status of introduced genomic alteration(s) Transgene-specific PCR (when applicable)	SCVIi073-A: homozygous c.699C $>$ A, heterozygous c.784G $>$ A SCVIi074-A: heterozygous c.554C $>$ T N/A	Fig. 1D
Verification of the absence of random plasmid integration events	PCR/Southern	Not performed	Not performed
Parental and modified cell line genetic identity evidence	STR analysis, microsatellite PCR (mPCR) or specific (mutant) allele seq	22 Loci tested, 100 % identical e.g. Include minimum amelogenin+ 8 loci (D5S818, D13S317, D7S820, D16S539, vWA, Th01, TPOX, CSF1PO) and specify if matched or not. Tabulate the STR results in an excel file	Submitted in archive with journal
Multilineage differentiation potential	Sequencing (genomic DNA PCR or RT-PCR product)	N/A	Sanger sequencing tracks with deciphered (deconvoluted if mixed tracks) sequence(s) with comparison to a reference genome, parental and engineered lines should be presented in the main figure
	PCR-based analyses	Detection of correctly-targeted and randomly- integrated selectable targeting construct status	Representative genotyping data could be presented in main or supplementary figures
	blotting (for knock-outs, KOs)	effects; demonstration of protein elimination in KOs	recordID
Off-target nuclease activity analysis	PCR across top 5/10 predicted top likely off-target sites, whole genome/ exome sequencing	N/A	Sanger sequencing tracks could be presented in the Supplementary figure
Specific pathogen-free status Multilineage differentiation potential	Mycoplasma e.g. Embryoid body formation OR Teratoma formation OR Scorecard OR Directed differentiation	Negative Directed differentiation of all 3 germ layers, analyzed with immunofluoresence	Supplementary Fig. 1A Positive expression of: Ectoderm: Pax6, Otx2 Mesoderm: Brachyury, Tbx6 Endoderm: Sox17, FoxA2
Donor screening (OPTIONAL) Genotype - additional histocompatibility info (OPTIONAL)	HIV 1 + 2 Hepatitis B, Hepatitis C Blood group genotyping HLA tissue typing	Not performed Not performed Not performed	Not performed Not performed Not performed

Fig. 1. Characterization of two iPSC lines derived from cardiomyopathy patients with BAG3 mutations.

much as an undifferentiated control with higher native expression of GAPDH (Fig. 1B). Further, SCVIi073-A (p17) and SCVIi074-A (p23) both show loss of the Sendai virus genome compared to the p4 control line, instead are similar to the differentiated CM control line (Fig. 1B). Differentiation capability of both lines was initiated followed by immunostaining for canonical nuclear markers of ectoderm, mesoderm, and endoderm (white scale bar = 70 μ m) (Fig. 1C). Sanger sequencing of BAG3 exon 3 was used to verify each iPSC line's mutation and determine homozygosity or heterozygosity (Fig. 1D). Chromosomal abnormalities were determined using Fisher Scientific KaryoStatTM which showed a partial gain in Chr. 12 for SCVIi073-A and normal for SCVIi074-A (Fig. 1E). Lastly, a mycoplasma test was used to verify lack of the bacteria (Supplement 1A) and a short tandem repeat (STR) analysis was employed to confirm the derived iPSCs were the same as the donor PBMCs (submitted in archive).

3. Materials and methods

3.1. Reprogramming

PBMCs were isolated from patients' blood by Percoll gradient separation, purified with multiple rounds of washing in DPBS, and plated in a 24-well plate. $1-2 \times 10^6$ PBMCs were cultured in 1 mL of StemPro-34 medium (Thermo Fisher) supplemented with 100 ng/mL SCF and 20 ng/mL IL-3 (Peprotech), 100 ng/mL FLT3, 20 ng/mL IL-6, and 20 ng/mL EPO (Thermo Fisher). Medium was replaced every other day until cell number stabilized. 2×10^5 PBMCs were then resuspended in 300 µl of complete PBMC medium and reprogrammed using the CytoTune®-iPSC Sendai Reprogramming Kit (Thermo Fisher). After 24 hr, media was replaced followed by every 2 days. On day 7, cells were re-plated with a 1:1 mix of Stem-MACSTM iPSC-brew XF medium with supplement (Brew) and Stem-ProTM-34 media. On d8, a full switch over to the Stem-MACSTM media was performed. Media was replaced as colonies appeared on d10–15 (Yildirim et al., 2022).

3.2. Cell culture

Human iPSCs were cultured using Brew, replaced every 2 days, until confluent. Cells were lifted using 500 μ M EDTA in DPBS for 5 min and replated in Brew with 5 μ M ROCK inhibitor (Y27632, SelleckChem) overnight after, new media without ROCK inhibitor was used. Cells were maintained in a 37 °C incubator with 5% CO₂ and ambient O₂.

3.3. Trilineage differentiation

For ectoderm differentiation, StemXVivo Ectoderm kit (#SC031B, Bio-Techne-R&D) was used according to the manufacturer's protocol. For mesoderm differentiation, RPMI plus B27-Insulin supplement with 12 μ M CHIR 99021 (Peprotech) was incubated with the cells for 2 days. Endoderm differentiation was performed with STEMdiffTM Definitive Endoderm Kit (#05110, StemCell Tech.). Cells were all passage 16 at the time of differentiation.

3.4. Immunofluorescence

Passage 16 cells were fixed, permeabilized and stained according to Abcam's immunocytochemistry and immunofluorescence protocol. Blocking occurred in a 1% BSA plus 5% normal Donkey serum for 30 min at room temperature (RT). Cells were incubated overnight at 4° C with primary antibodies and for 1 hr at RT for secondary antibodies (Table 2). Finally, nuclei were counterstained with NucBlue (R37606, Invitrogen) before imaging.

Table 2	
Reagents detai	ls.

Antibodies and stains used for immunocytochemistry/flow-cytometry

	Antibody	Dilution	Company Cat # and RRID
Pluripotency Markers	Mouse IgG2b kanti- OCT-3/4	1:100	Santa Cruz Biotechnology Cat# sc-5279, RRID: AB 628051
	Rabbit anti-NANOG	1:100	Proteintech Cat# 14295–1-AP, RRID:
	Mouse IgG1 kanti- SOX2	1:100	Ab_1007719 Santa Cruz Biotechnology Cat# sc-365823, RRID: AB 10842165
Differentiation Markers (Ectoderm)	Goat anti-OTX2	1:200	R and D Systems Cat# AF1979, RRID:
	Rabbit anti-PAX6	1:200	Thermo Fisher Scientific Cat# 42–6600, RRID: AB 2533534
Differentiation Markers (Mesoderm)	Goat anti-Sox17	1:200	R and D Systems Cat# AF1924, RRID:
	Rabbit anti-FOXA2	1:200	Thermo Fisher Scientific Cat# 701698, RRID:
Differentiation Markers (Endoderm)	Goat anti-Brachyury	1:200	AB_2370439 R and D Systems Cat# AF2085, RRID:
	Rabbit anti-TBX6	1:200	Thermo Fisher Scientific Cat# PA5- 35102, RRID: AB 2552412
Secondary antibodies	Alexa Fluor 488 Goat anti-Mouse IgG1	1:1000	Thermo Fisher Scientific Cat# A- 21121, RRID: AB 2535764
	Alexa Fluor 647 Goat anti-Mouse IgG2b	1:250	Thermo Fisher Scientific Cat# A- 21242, RRID: AB 2535811
	Alexa Fluor 488 Donkey anti-Goat IgG (H + L)	1:500	Thermo Fisher Scientific Cat# A- 21428, RRID: AB 2535849
	Alexa Fluor 555 Donkey anti-Rabbit IgG (H + L)	1:500	Abcam Cat# ab150074, RRID: AB_2636997
Nuclear stain	NucBlue™ Live ReadyProbes™ Reagent (Heachgt22242)	2 drops/ mL of wash buffer	Invitrogen Cat#: R37605

Primers and Oligonucleotides used in this study

	Target	Forward/Reverse primer (5'-3')
Sendai Virus Plasmid (qPCR)	Sendai Virus genome	Mr042698800_mr
Pluripotency Markers (qPCR)	SOX2	Hs04234836_s1
	NANOG	Hs02387400_g1
House-Keeping Genes (qPCR)	GAPDH	Hs02786624_g1
Genotyping (PCR	Exon 3 of BAG3	Forward:
and Sanger)		CCGCCACACACCCAGCTAATTTTT
		Reverse:
		ACTTGCCTGTAGGTACACGCAT
		Band Size: 845 bp
		Sequencing:
		TATGGATTGCCCTGAGGAGGTG

3.5. RT-qPCR

RNA was extracted using Direct-zolTM RNA Microprep Kit (ZYMO #R2062). To generate cDNA, iScriptTM cDNA Synthesis Kit (BioRad #1708891) was performed according to manufacturer recommendation. Expression of SOX2, NANOG, and SEV was amplified using commercially available probes (Table 2) and TaqManTM Gene expression Assay (ABITM #4444556).

3.6. Mutation sequencing

PCR primers were designed in Benchling to flank exon 3 (Table 2) and used with Q5[®] Hot Start High-Fidelity DNA polymerase (M0494L, NEB). The PCR was performed according to manufacturer recommendation with a 69°C annealing temp. PCR products were separated on a 1% agarose gel and extracted using the QiaQuick gel extraction kit (Qiagen). Amplicon sequencing was performed using Azenta Life Sciences Sanger Sequencing Service using a novel primer.

3.7. Mycoplasma Detection

Contamination was evaluated using a MycoAlert Detection kit (LT07-318, Lonza) at p16 for both lines.

3.8. Short tandem repeat analysis

Genomic DNA from PBMCs and p10 iPSCs was purified using DNeasy Blood and Tissue kit (Qiagen). STR analysis was performed using CLA IdentiFilerTM Plus and IdentifilerTMDirect PCR amplification kit (Thermo Fisher) by the Stanford PAN facility.

Declaration of Competing Interest

J.C.W. is a co-founder of Khloris Biosciences; however, the work done here is completely independent. The other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank Carlos D. Vera, James WS Jahng, Gema Mondéjar-Parreño, and Kiran A. Vaidya for their technical support with these projects. This work was supported by National Institutes of Health (NIH) 75N92020D00019, R01 HL126527, R01 HL130020, R01 HL146690, and P01 HL141084 (JCW) and T32 EB009035 (PjHZ).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2023.103019.

References

- Garnier, S. et al. Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23. Eur Heart J 42, 2000-2011 (2021). https://doi.org:10.1093/eurheartj/ehab030.
- Martin, T.G., et al., 2021. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat. Commun. 12, 2942. https://doi.org/10.1038/s41467-021-23272-z.
- Tsao, C.W., Aday, A.W., Almarzooq, Z.I., Alonso, A., Beaton, A.Z., Bittencourt, M.S., Boehme, A.K., Buxton, A.E., Carson, A.P., Commodore-Mensah, Y., Elkind, M.S.V., Evenson, K.R., Eze-Nliam, C., Ferguson, J.F., Generoso, G., Ho, J.E., Kalani, R., Khan, S.S., Kissela, B.M., Knutson, K.L., Levine, D.A., Lewis, T.T., Liu, J., Loop, M.S., Ma, J., Mussolino, M.E., Navaneethan, S.D., Perak, A.M., Poudel, R., Rezk-Hanna, M., Roth, G.A., Schroeder, E.B., Shah, S.H., Thacker, E.L., VanWagner, L.B., Virani, S.S., Voecks, J.H., Wang, N.-Y., Yaffe, K., Martin, S.S., 2022. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 145 (8).
- Yildirim, Z., et al., 2022. Generation of two induced pluripotent stem cell lines from dilated cardiomyopathy patients caused by heterozygous mutations in the HCN4 gene. Stem Cell Res. 65, 102951 https://doi.org/10.1016/j.scr.2022.102951.

Dominguez, F., et al., 2018. Dilated Cardiomyopathy Due to BLC2-Associated Athanogene 3 (BAG3) Mutations. J. Am. Coll. Cardiol. 72, 2471–2481. https://doi. org/10.1016/j.jacc.2018.08.2181.