Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab resource: Stem Cell Line

Generation of an induced pluripotent stem cell line (GIBHi004-A) from a Parkinson's disease patient with mutant DJ-1/PARK7 (p.L10P)

Yunpan Li^{a,b}, David P. Ibañez^{a,b,c}, Wenxia Fan^d, Ping Zhao^e, Shuhan Chen^{a,b,c}, Mazid Md. Abdul^{a,b}, Yu Jiang^{a,b}, Lixin Fu^{a,b,c}, Zhiwei Luo^d, Zhenhua Liu^{f,g}, Yueli Yang^h, Jifeng Guo^{f,g}, Giacomo Volpe^{a,b}, Shahzina Kanwal^{a,b}, Dongye Wang^{a,b}, Beisha Tang^{f,g,*}, Wenjuan Li^{a, b,d,*}

^a Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China

^b Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou 510530, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

^d Guangzhou Medical University, Guangzhou 511436, China

^f Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China

⁸ National Clinical Research Center for Geriatric Diseases, Central South University, Changsha 410008, China

^h College of Veterinary Medicine, Jilin University, Changchun 130062, China.

ABSTRACT

Mutations occurring in the gene body of PARK7 (encoding DJ-1/PARK7) cause autosomal recessive early-onset parkinsonism (AREP). These mutations produce a loss of function and have been reported to lead to dopaminergic neuron degeneration in the substantia nigra. However, the underlying mechanisms are largely unknown. Here, we report the generation of a patient-derived induced pluripotent stem cell (iPSC) line carrying mutant DJ-1 (p.L10P). This cell line is a valuable tool for in vitro Parkinson's disease (PD) modeling and mechanistic studies.

Gene/locus

1. Resource table

			(p.mor)	
		Method of modification	N/A	
Unique stem cell lines	GIBHi004-A	Name of transgene or re- sistance	N/A	
Alternative names of ste- m cell lines Institution Contact information of distributor	PARK7-L10P-C2 Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China Wenjuan Li, e-mail: li_wenjuan@gibh.ac.cn	Inducible/constitutive s- ystem Date archived/stock date Cell line repository/bank Ethical approval	N/A May 2018 https://hpscreg.eu/cell-line/GIBHi004-A The Ethics Committee of the Guangzhou Institutes of Biomedicine and Health (Guangzhou, China) approved this procedure (approval no. 2014003)	
Type of cell lines	iPSCs			
Origin	Human	2. Resource utility		
Additional origin infor-	Age: 23			
mation	Gender: Male			
	Ethnicity: Chinese	To date, the mecha	anisms by which PARK7 mutations cause dopa-	
Cell Source	Skin fibroblasts	minergic neuron degeneration linked to AREP are still unclear. Her		
Clonality	Clonal			
Method of reprogram-	Retroviral OCT4, SOX2, KLF4, MYC	we have generated an IPSC clone with mutant DJ-1 (p.L10P) from pa		
ming		tient-derived fibroblasts. This cell line will facilitate disease modelin		
Gene modification	Yes	and mechanistic studies of PD in vitro.		
Type of modification	Hereditary			
Associated disease	Parkinson's disease			

* Corresponding authors at: Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China (W. Li). Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China (B. Tang). E-mail addresses: bstang7398@163.com (B. Tang), li_wenjuan@gibh.ac.cn (W. Li).

https://doi.org/10.1016/j.scr.2020.101845 Received 5 March 2020; Received in revised form 23 April 2020; Accepted 11 May 2020 Available online 27 May 2020

1873-5061/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

PARK7 gene/Chromosome 1p36.23, c.29 T > C

(p.L10P)

^e Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China

А

С

F

PARK7-L10P-C2

Н

PARK7-L10P-C2

3. Resource details

Human PARK7 is one of the genes mutated in AREP. DJ-1 has a role in protecting cells from oxidative stress (Meiser et al., 2016). Several missense mutations in DJ-1, including the L166P, M26I, L10P, and P158D, disrupt the formation of DJ-1 homodimers, causing poor folding and proteolytic degradation of the protein (Zeng et al., 2018). Among these mutations, it has been reported the case of a patient carrying familial DJ-1 L10P mutation that led to the development of typical PD symptoms at the age of 18 (Guo et al., 2008).

Fig. 1. Characterization of DJ-1/PARK7-L10P (GIBHi004-A) iPSC clone.

Patient-derived iPSCs can be readily differentiated into disease-related cell types such as dopaminergic neurons that can be subsequently used for disease modeling in vitro (Zhao et al., 2014). Using skin fibroblasts of PD patient with homozygous missense mutation in PARK7 (c.29 T > C), we generated an iPSC clone (PARK7-L10P-C2) by retroviral overexpression of OCT4, SOX2, KLF4, and MYC. The PARK7 mutation in this iPSC clone was verified by PCR and Sanger sequencing (Fig. 1A). Following this, we confirmed that exogenous OCT4, SOX2, KLF4, and MYC retroviruses were silenced by reverse transcription quantitative PCR (RT-qPCR) (Fig. 1B). Additionally, this clone was free from mycoplasma contamination and had normal karvotype (Fig. 1C and D). Short tandem repeat (STR) assay results also confirmed that it was indeed derived from the same donor fibroblasts. Next, the expression of endogenous pluripotency genes OCT4, SOX2, NANOG and TERT were validated at the mRNA level by RT-qPCR (Fig. 1E). As expected, we observed typical human embryonic stem cell-like morphology and immunostaining for pluripotency markers NANOG, TRA1-60, and TRA1-81 was positive (Fig. 1F). Finally, embryoid body (EB) differentiation followed by RT-qPCR detected robust induction of ectoderm (MAP2, SOX1, and PAX6), mesoderm (SNAI2, HAND1, and CDX2), and endoderm (GATA3, GATA6, and RXRG) (Fig. 1G), whereas immunostaining of attached EBs showed the presence of cells positive for PAX6 (ectoderm), VIMENTIN (mesoderm), and SOX17 (endoderm) (Fig. 1H).

In conclusion, this well-characterized iPSC clone will be useful for the *in vitro* disease modeling of PARK7-related AREP and accelerate mechanistic studies (See Table 1).

4. Materials and methods

4.1. Cell culture

Fibroblasts from an early-onset PD patient with mutant DJ-1 were cultured in DMEM (CORNING, 07719005) supplemented with 10% FBS (NATOCOR, NTC-HK023), 1% non-essential amino acids (Gibco, 11140050), 1% Glutamax (Gibco, 35050079), 1% sodium pyruvate (CORNING, 24118006), and 1% penicillin–streptomycin (Hyclone, J190014). Reprogramming was performed using retroviral plasmids (Addgene) producing human OCT4, SOX2, KLF4, and MYC

Table	1
-------	---

Characterization and validation.

transcription factors. HEK293T cells were transfected with individual retroviral plasmid together with the packaging plasmids. 48 h after transfection, viral supernatants were harvested on two consecutive days. Fibroblasts were trypsinized and seeded as 40,000 cells/well on 6well plates. They were infected with viral supernatants supplemented with 8 µg/ml polybrene (Sigma). Then, transduced cells were fed daily with human ESC medium: DMEM/F12, 20% KSR (Thermo Fisher Scientific, A3181502), 10 ng/ml basic fibroblast growth factor (NOVUS, NBP2-34921), 1% non-essential amino acids (Gibco, 11140050), 1% Glutamax (Gibco, 35050079), and 0.1 mM β-mercaptoethanol. Four days later, 1 mM valproic acid (Sigma, P4543) and 50 µg/ml ascorbic acid (Sigma, A5960) were added into the medium for another 8–15 days to boost reprogramming efficiency. Then, valproic acid and ascorbic acid were withdrawn, and colonies with typical human ESC-like morphology were picked and adapted to a feeder free culture condition (mTeSR1/Matrigel). Picked colonies were cultured on Matrigel (Corning, 354277)-coated plates in mTeSR1 medium (Stemcell, 85850) and routinely passaged every 3-4 days with 0.5 mM EDTA. Incubation conditions were 37 °C and normoxia with 5% CO₂. CryoStor® cell cryopreservation media CS10 (Sigma, C2874) and 10 µM ROCK inhibitor Y27632 (Selleck, S1049) were used for cryopreservation of iPSCs.

4.2. RT-qPCR

Total RNA was prepared with RNAzol[®] RT (MRC, RN 190) and converted to cDNA using oligo(dT)₂₀-primers from ReverTra Ace- α -[®] kit (TOYOBO). RT-qPCR was performed using SYBR Green (Takara, RR420A) and an ABI 7500 real-time PCR machine. Data were analyzed based on 2^ΔΔΔCt method. Primer sequences are listed in Table 2.

4.3. Immunofluorescence

Cells were fixed with 4% paraformaldehyde at room temperature for 10 min and permeabilized and blocked with 0.2% Triton X-100 containing 3% BSA at room temperature for 1 h. Then, they were incubated with primary antibodies diluted in 3% BSA at 4 °C overnight. After washing three times with PBS, they were incubated with secondary antibodies diluted in 3% BSA at room temperature for 1 h. Finally,

Classification	Test	Result	Data
Morphology Phenotype	Photography Qualitative analysis (Immunocytochemistry)	Normal Immunostaining of pluripotency markers: NANOG, TRA-1-60, and TRA-1-81	Fig. 1 panel F Fig. 1 panel F
Genotype	Quantitative analysis (RT-qPCR) Karyotype (G-banding) and resolution	RT-qPCR for <i>OCT4, SOX2, NANOG</i> , and <i>TERT</i> PARK7-L10P-C2: 46, XY Resolution: 400	Fig. 1 panel E Fig. 1 panel D
Identity	Microsatellite PCR (mPCR) STR analysis	N/A STR: 20 sites tested and all matched	N/A Available with the authors
Mutation analysis (IF APPLICABLE)	Sequencing	Confirmed genotypes: Homozygous mutation PARK7-L10P-C2: c.29 T $> C$	Fig. 1 panel A
Microbiology and virology	Southern Blot OR WGS Mycoplasma	N/A Mycoplasma testing by luminescence. Negative	N/A Fig. 1 panel C
Differentiation potential	Embryoid body formation OR Teratoma formation OR Scorecard OR Directed differentiation	Expression of three germ layers marker genes in EB formation experiments: Ectoderm: <i>MAP2</i> , <i>SOX1</i> , and <i>PAX6</i> Mesoderm: <i>SNA12</i> , <i>HAND1</i> , and <i>CDX2</i> Endoderm: <i>GATA3</i> , <i>GATA6</i> , and <i>RXRG</i> Immunofluorescence of three germ layers markers in EB formation: Ectoderm: PAX6 Mesoderm: VIMENTIN Endoderm: SOX17	Fig. 1 panel G Fig. 1 panel H
Donor screening (OPTIONAL)	HIV 1 + 2 Hepatitis B, Hepatitis C	N/A	N/A
Genotype additional info (OPTIONAL)	Blood group genotyping HLA tissue typing	N/A N/A	N/A N/A

Table 2 Reagents details.

Antibodies used for Western blotting/immunocytochemistry

Antuboutes used for western blotting/initiatiotytochemistry						
	Antibody	Dilution	Company Cat# and RRID			
Pluripotency markers (immunocytochemistry)	Rabbit anti-NANOG	1:200	Abcam Cat# ab21624, RRID: AB_446437			
	Mouse anti-TRA-1–60	1:100	Merck Millipore Cat# MAB4360, RRID: AB_2119183			
	Mouse anti-TRA-1–81	1:50	Merck Millipore Cat# MAB4381, RRID: AB_177638			
Differentiation markers (immunocytochemistry)	Mouse anti-VIMENTIN	1:200	Sigma Cat# v5255, RRID: AB_477625			
	Goat anti-SOX17	1:200	R&D Systems Cat# AF1924, RRID: AB_355060			
	Mouse anti-PAX6	1:250	DSHB Cat# PAX6, RRID: AB_528427			
Secondary antibodies	Alexa Fluor 488 Goat anti-Mouse IgG	1:500	Invitrogen Cat# A21141, RRID: AB_141626			
	Alexa Fluor 488 Goat anti-Mouse IgM	1:400	Invitrogen Cat# A21042, RRID: AB_2535711			
	Alexa Fluor 488 Rabbit anti- Goat IgG	1:400	Invitrogen Cat# A11078, RRID: AB_2534122			
Primers						
T milets	Target		Forward/Reverse primer (5'-3')			
Pluripotency Markers (qPCR)	OCT4		CCTCACTTCACTGCACTGTA/CAGGTTTTCTTTCCCTAGCT			
	SOX2		CCCAGCAGACTTCACATGT/CCTCCCATTTCCCTCGTTTT			
	NANOG		TGAACCTCAGCTACAAACAG/TGGTGGTAGGAAGAGTAAAG			
	TERT		ACGCTTCATGTGCCACCA/TTCTCCATGTCGCCGTAGC			
	DNMT3B		AGGGAAGACTCGATCCTCGTC/GTGTGTAGCTTAGCAGACTGG			
Differentiation Markers (qPCR)	MAP2		TGGTGCCGAGTGAGAAGAAG/AGTGGTTGGTTAATAAGCCGAAG			
	SOX1		CCTCCGTCCATCCTCTG/AAAGCATCAAACAACCTCAAG			
	PAX6		TCTTTGCTTGGGAAATCCG/CTGCCCGTTCAACATCCTTAG			
	SNAI2		CAGACCCTGGTTGCTTCAA/TGACCTGTCTGCAAATGCTC			
	HAND1		CCAAGGATGCACAGTCTGG/CGGTGCGTCCTTTAATCCT			
	CDX2		CTGGAGCTGGAGAAGGAGTTTC/ATTTTAACCTGCCTCTCAGAGAGC			
	GATA3		TGTGTGAACTGTGGGGGCAA/TCTGACAGTTCGCACAGGAC			
	GATA6		ACTTGAGCTCGCTGTTCTCG/CAGCAAAAATACTTCCCCCA			
	RXRG		AGCAGCTTTTCACCCTCGT/ACATGTAAACCCGTGGCCA			
House-Keeping Genes (qPCR)	ACTB		CCCAGAGCAAGAGAGG/GTCCAGACGCAGGATG			

nuclei were stained with 5 ng/ml DAPI as counterstaining, followed by imaging using a ZEISS Axio Vert.A1 microscope. Primary antibodies used for immunofluorescence are listed in Table 2.

4.4. STR analysis

DNA were extracted using Wizard[®] Genomic DNA Purification Kit (Promega, A1120). STR analysis was performed using AmpFLSTR Identifiler PCR Amplification Kit (ThermoFisher Scientific, 4322288) following manufacturer's instructions.

4.5. Karyotyping

Karyotyping was performed in cells at passage 11 by G-banding. Briefly, cells were treated with 100 ng/ml colcemid for 1 h for metaphase arrest. Arrested cells were trypsinized, pelleted, and resuspended with 100 μ l PBS followed by addition of 10 ml hypotonic solution (0.56 g KCl and 0.5 g sodium citrate in 200 ml H₂O) dropwise. Finally, cells were fixed with fixation buffer (3 parts methanol to 1 part acetic acid). A total of 20 randomly selected metaphase spreads were counted and stained using standard G-banding analysis at 400-band resolution.

4.6. Mycoplasma detection

Mycoplasma detection was performed using MycoAlert^m Mycoplasma Detection Kit (LONZA, LT07-318) following manufacturer's instructions. Stability of the assay was verified by positive and negative controls provided in the kit.

4.7. EB differentiation

iPSCs were first dissociated with Accutase (Sigma, A6964) to single cells, then 1.5 million cells were resuspended in EB differentiation medium: KnockOut[™] DMEM (Thermo Fisher Scientific, 10829018), 1%

Glutamax, 1% non-essential amino acids, and 20% KSR with 10 μ M Y27632, and transferred to a well of an AggreWellTM 800 plate (Stemcell, 34811) and cultured for 24 h to form EBs. These EBs were transferred to a low adherent dish and continuously cultured in EB differentiation medium for 15 days, with the medium changed every 3 days. Then, RNA was extracted to check expression of different differentiation markers. EBs for immunostaining were attached to Matrigel-coated plates at day 10 and were fixed at day 15.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank all members of our laboratory for their comments. This work was supported by the Guangdong Province Science and Technology Program (2014A030312001), Guangzhou Science and Technology Program (201807010066), Innovative Team Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (2018GZR110103001), National Natural Science Foundation of China (81430023), and China Postdoctoral Science Foundation Grant (2019M650195). S.K is supported by Chinese Academy of Sciences President's International Young Staff Fellowship. M. M. A. is supported by the CAS-TWAS President's PhD Fellowship Program.

References

Guo, J.F., Xiao, B., Liao, B., Zhang, X.W., Nie, L.L., Zhang, Y.H., Shen, L., Jiang, H., Xia, K., Pan, Q., Yan, X.X., Tang, B.S., 2008. Mutation analysis of Parkin, PINK1, DJ-1 and ATP13A2 genes in Chinese patients with autosomal recessive early-onset Parkinsonism. Mov. Disord. 23 (14), 2074–2079.

Y. Li, et al.

Meiser, J., Delcambre, S., Wegner, A., Jager, C., Ghelfi, J., d'Herouel, A.F., Dong, X., Weindl, D., Stautner, C., Nonnenmacher, Y., Michelucci, A., Popp, O., Giesert, F., Schildknecht, S., Kramer, L., Schneider, J.G., Woitalla, D., Wurst, W., Skupin, A., Weisenhorn, D.M., Kruger, R., Leist, M., Hiller, K., 2016. Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiol. Dis. 89, 112–125. Zeng, X.S., Geng, W.S., Jia, J.J., Chen, L., Zhang, P.P., 2018. Cellular and molecular basis of neurodegeneration in parkinson disease. Front Aging Neurosci 10, 109

of neurodegeneration in parkinson disease. Front. Aging Neurosci. 10, 109.
Zhao, P., Luo, Z., Tian, W., Yang, J., Ibanez, D.P., Huang, Z., Tortorella, M.D., Esteban, M.A., Fan, W., 2014. Solving the puzzle of Parkinson's disease using induced pluripotent stem cells. Exp. Biol. Med. 239 (11), 1421–1432.