Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells


Control over progenitor proliferation and neurogenesis remains a key challenge for stem cell neurobiology and a prerequisite for successful stem cell replacement therapies for neurodegenerative diseases like Parkinson's disease (PD). Here, we examined the function of two nuclear receptors, liver X receptors (Lxralpha and beta) and their ligands, oxysterols, as regulators of cell division, ventral midbrain (VM) neurogenesis, and dopaminergic (DA) neuron development. Deletion of Lxrs reduced cell cycle progression and VM neurogenesis, resulting in decreased DA neurons at birth. Activation of Lxrs with oxysterol ligands increased the number of DA neurons in mouse embryonic stem cells (ESCs) and in wild-type but not Lxralphabeta(-/-) VM progenitor cultures. Likewise, oxysterol treatment of human ESCs (hESCs) during DA differentiation increased neurogenesis and the number of mature DA neurons, while reducing proliferating progenitors. Thus, Lxr ligands may improve current hESC replacement strategies for PD by selectively augmenting the generation of DA neurons.

Authors Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, Parish CL, Hazenberg C, Richter LA, Hovatta O, Gustafsson JA, Arenas E
Journal Cell stem cell
Publication Date 2009 Oct 2;5(4):409-19
PubMed 19796621
DOI 10.1016/j.stem.2009.08.019

Research Projects

Cell Lines