Two iPSC lines generated from the bone marrow of a relapsed/refractory AML patient display normal karyotypes and myeloid differentiation potential


Using iPSCs to study cancer has been complicated by the fact that many cancer cells are difficult to reprogram, which has been attributed to the genomic abnormalities present. Acute Myeloid Leukemia (AML) is a complex disease that presents with various types of genomic aberrations that affect prognosis. Here we reprogrammed CD34+ cells from an AML patient containing a rare der(7)t(7;13) translocation associated with poor prognosis, who had relapsed and was refractory to current treatments. The generated AML-iPSCs displayed normal karyotypes and myeloid differentiation potential. These findings have implications for modeling and treating AML disease. Copyright © 2019. Published by Elsevier B.V.

Authors Yamasaki AE, King NE, Matsui H, Jepsen K, Panopoulos AD
Journal Stem cell research
Publication Date 2019 Dec;41:101587
PubMed 31739201
DOI 10.1016/j.scr.2019.101587

Research Projects

Cell Lines