Development of Fluorine-Free Tantalum Carbide MXene Hybrid Structure as a Biocompatible Material for Supercapacitor Electrodes
Summary
The application of nontoxic 2D transition-metal carbides (MXenes) has recently gained ground in bioelectronics. In group-4 transition metals, tantalum possesses enhanced biological and physical properties compared to other MXene counterparts. However, the application of tantalum carbide for bioelectrodes has not yet been explored. Here, fluorine-free exfoliation and functionalization of tantalum carbide MAX-phase to synthesize a novel Ta4C3Tx MXene-tantalum oxide (TTO) hybrid structure through an innovative, facile, and inexpensive protocol is demonstrated. Additionally, the application of TTO composite as an efficient biocompatible material for supercapacitor electrodes is reported. The TTO electrode displays long-term stability over 10 000 cycles with capacitance retention of over 90% and volumetric capacitance of 447 F cm-3 (194 F g-1) at 1 mV s-1. Furthermore, TTO shows excellent biocompatibility with human-induced pluripotent stem cells-derived cardiomyocytes, neural progenitor cells, fibroblasts, and mesenchymal stem cells. More importantly, the electrochemical data show that TTO outperforms most of the previously reported biomaterials-based supercapacitors in terms of gravimetric/volumetric energy and power densities. Therefore, TTO hybrid structure may open a gateway as a bioelectrode material with high energy-storage performance for size-sensitive applications. © 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH.
Authors | Rafieerad A, Amiri A, Sequiera GL, Yan W, Chen Y, Polycarpou AA, Dhingra S |
---|---|
Journal | Advanced functional materials |
Publication Date | 2021 Jul 23;31(30):2100015 |
PubMed | 35264918 |
PubMed Central | PMC8889894 |
DOI | 10.1002/adfm.202100015 |