Dopaminergic Neurons Differentiated from LRRK2 I1371V-Induced Pluripotent Stem Cells Display a Lower Yield, α-Synuclein Pathology, and Functional Impairment


Being a large multidomain protein, LRRK2 has several confirmed pathological mutant variants for PD, and the incidence of these variants shows ethnicity biases. I1371V, a mutation in the GTPase domain, has been reported in East-Asian populations, but there are no studies reported on dopaminergic (DA) neurons differentiated from this variant. The aim here was to assess the yield, function, and α-synuclein pathology of DA neurons differentiated from LRRK2 I1371V iPSCs. FACS analysis of neural progenitors (NPs) showed a comparable immunopositive population of cells for neural and glial progenitor markers nestin and S100β; however, NPs from I1371V iPSCs showed lower clonogenic and proliferative capacities than healthy control NPs as determined by the neurosphere assay and Ki67 expression. Floor plate cells obtained from I1371V NPs primed with FGF8 showed distinctly lower immunopositivity for FOXA2 and CLIC5 than healthy control FPCs and similar DOC2B expression. On SHH addition, a similar mature neuronal population was obtained from both groups; however, the yield of TH-immunopositive cells was significantly lower in I1371V, with lower expression of mature DA neuronal markers En1, Nurr1, and DAT. Vesicular dopamine release and intracellular Ca2+ response with KCl stimulation were lower in I1371V DA neurons, along with a significantly reduced expression of resting vesicle marker VMAT2. A concurrently lower expression of PSD95/Syn-I immunopositive puncta was observed in I1371V differentiated cells. Further, higher phosphorylation of α-synuclein and aggregation of oligomeric α-synuclein in I1371V DA neurons were observed. Our data demonstrated conclusively for the first time that mutations in the I1371V allele of LRRK2 showed developmental deficit from the FPC stage and generated a lower yield/number of TH-immunopositive neurons with impairment in their function and synapse density along with increased α-synuclein pathology.

Authors Jagtap S, Potdar C, Yadav R, Pal PK, Datta I
Journal ACS chemical neuroscience
Publication Date 2022 Sep 7;13(17):2632-2645
PubMed 36006382
DOI 10.1021/acschemneuro.2c00297

Research Projects

Cell Lines