Gene editing of human iPSCs rescues thrombophilia in hereditary antithrombin deficiency in mice

Summary

Hereditary antithrombin deficiency is caused by SERPINC1 gene mutations and predisposes to recurrent venous thromboembolism that can be life-threatening. Therefore, lifelong anticoagulation is required, which has side effects and may not be effective. In this study, peripheral blood mononuclear cells from a patient with severe antithrombin deficiency were reprogrammed into induced pluripotent stem cells (iPSCs). The mutation was corrected using CRISPR-Cas9 and Cre/LoxP genome editing. iPSCs were differentiated into hepatocytes, which were injected into the spleen of antithrombin knockout mice to restore the activity of antithrombin and reduce the thrombophilic state. Human iPSC-differentiated hepatocytes colonized mice and secreted antithrombin stably, normalizing antithrombin in plasma (activity: from 46.8 ± 5.7% to 88.6 ± 7.6%, P < 0.0001; antigen: from 146.9 ± 19.5 nanograms per milliliter to 390.7 ± 16.1 nanograms per milliliter, P < 0.0001). In venous thrombosis model, the rate of thrombosis in mice treated with edited hepatocytes, parental hepatocytes, and wild-type mice were 60, 90, and 70%, respectively. The thrombus weight was much lighter in mice treated with edited hepatocytes compared with parental hepatocytes (7.25 ± 2.00 milligrams versus 15.32 ± 2.87 milligrams, P = 0.0025) and showed no notable difference compared with that in wild-type mice (10.41 ± 2.91 milligrams). The activity and concentration of antithrombin remained high for 3 weeks after injection. The liver and kidney function markers showed no obvious abnormality during the observation period. This study provides a proof of principle for correction of mutations in patient-derived iPSCs and potential therapeutic applications for hereditary thrombophilia.

Authors Tang LV, Tao Y, Feng Y, Ma J, Lin W, Zhang Y, Zhang Y, Wu T, Cai Y, Lu H, Wei J, Corral J, Hu Y
Journal Science translational medicine
Publication Date 2022 Nov 30;14(673):eabq3202
PubMed 36449603
DOI 10.1126/scitranslmed.abq3202

Research Projects

Cell Lines