A facile method to generate cerebral organoids from human pluripotent stem cells

Summary

Human cerebral organoids (COs) are self-organizing three-dimensional (3D) neural structures that provide a human-specific platform to study the cellular and molecular processes that underlie different neurological events. The first step of CO generation from human pluripotent stem cells (hPSCs) is neural induction, which is an in vitro simulation of neural ectoderm development. Several signaling pathways cooperate during neural ectoderm development and in vitro differentiation of hPSCs toward neural cell lineages is also affected by them. In this study, we considered some of the known sources of these variable signaling cues arising from cell culture media components and sought to modulate their effects by applying a comprehensive combination of small molecules and growth factors for CO generation. Histological analysis demonstrated that these COs recapitulate the neural progenitor zone and early cortical layer organization, containing different types of neuronal and glial cells which was in accordance with single-nucleus transcriptome profiling results. Moreover, patch clamp and intracellular Ca2+ dynamic studies demonstrated that the COs behave as a functional neural network. Thus, this method serves as a facile protocol for generating hPSC-derived COs that faithfully mimic the features of their in vivo counterparts in the developing human brain. See also Figure 1(Fig. 1). Copyright © 2023 Simorgh et al.

Authors Simorgh S, Mousavi SA, To SK, Pasque V, Wierda K, Vervliet T, Yeganeh M, Pooyan P, Chai YC, Verfaillie C, Baharvand H
Journal EXCLI journal
Publication Date 2023;22:1055-1076
PubMed 37927348
PubMed Central PMC10620858
DOI 10.17179/excli2023-6299

Research Projects

Cell Lines