The use of simultaneous reprogramming and gene correction to generate an osteogenesis imperfecta patient COL1A1 c. 3936 G>T iPSC line and an isogenic control iPSC line
Summary
To develop a disease model for the human 'brittle bone' disease, osteogenesis imperfecta, we used a simultaneous reprogramming and CRISPR-Cas9 genome editing method to produce an iPSC line with the heterozygous patient mutation (COL1A1 c. 3936 G>T) along with an isogenic gene-corrected control iPSC line. Both IPSC lines had a normal karyotype, expressed pluripotency markers and differentiated into cells representative of the three embryonic germ layers. This osteogenesis imperfecta mutant and isogenic iPSC control line will be of use in exploring disease mechanisms and therapeutic approaches in vitro. Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
Authors | Howden S, Hosseini Far H, Motazedian A, Elefanty AG, Stanley EG, Lamandé SR, Bateman JF |
---|---|
Journal | Stem cell research |
Publication Date | 2019 Jul;38:101453 |
PubMed | 31082677 |
DOI | 10.1016/j.scr.2019.101453 |