Safety and Effectiveness of Human embryonic stem cell-derived M cells (CAStem) for Pulmonary Fibrosis Correlated with novel coronavirus pneumonia (COVID-19)

General Information

Clinical trials phase Other
Start date (estimated) 2020-03-20
End date (estimated) 2021-03-19
Clinical feature
Label COVID-19
Link http://purl.obolibrary.org/obo/DOID_0080600
Description A Coronavirus infectious disease that is characterized by fever, cough and shortness of breath and that has_material_basis_in Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a subtype of Betacoronavirus pandemicum.

Administrative Information

ICTRP weblink https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR2000031139
Other study identifiers
Name ChiCTR2000031139
Description Chinese Clinical Trial Registry (ChiCTR)
Source weblink http://www.chictr.org.cn/showproj.aspx?proj=51404
Sponsors Wuhan Jinyintan Hospital (Wuhan Infectious Diseases Hospital)

Cells

Which differentiated cell type is used
Label mesenchymal stem cell
Link http://purl.obolibrary.org/obo/CL_0000134
Description A connective tissue cell that normally gives rise to other cells that are organized as three-dimensional masses. In humans, this cell type is CD73-positive, CD90-positive, CD105-positive, CD45-negative, CD34-negative, and MHCII-negative. They may further differentiate into osteoblasts, adipocytes, myocytes, neurons, or chondroblasts in vitro. Originally described as residing in the bone marrow, this cell type is now known to reside in many, if not all, adult organs.; Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts, chondrocytes, myocytes, and adipocytes. These cells originate mainly from the mesoderm of the embryo, which forms connective tissues, muscle, and the circulatory and urinary systems. However, in adults, MSCs are found in multiple tissues, including bone marrow, adipose tissue, the umbilical cord, and dental tissues. The primary function of MSCs is to maintain and repair the tissues in which they are found. When damage occurs, the MSCs are able to migrate to the site of injury, where they aid in regenerating the damaged tissue by differentiating into the required cell type and by secreting growth factors that enhance tissue repair and reduce inflammation. Furthermore, MSCs can also act as immunomodulators, suppressing immune reactions and reducing inflammation, both locally and systemically. Apart from their role in tissue maintenance and repair, MSCs are integral to the field of regenerative medicine and are being investigated for their therapeutic potential in various clinical settings. Owing to their multipotent nature, immunomodulatory activity, and the relative ease of isolation, these cells can be engineered and translated into therapies to treat a variety of diseases, including bone and cartilage defects, liver diseases, heart disorders, and autoimmune diseases, amongst others. They have also been used as vectors for anticancer agents and in cell and gene therapy applications. (This extended description was generated by ChatGPT and reviewed by the CellGuide team, who added references, and by the CL editors, who approved it for inclusion in CL. It may contain information that applies only to some subtypes and species, and so should not be considered definitional.); Many but not all mesenchymal cells derive from the mesoderm. MSCs are reportedly CD3-negative, CD4-negative, CD5-negative, CD8-negative, CD11a-negative, CD11b-negative, CD14-negative, CD19-negative, CD29-positive, CD31-negative, CD34-negative, CD38-negative, CD40-negative, CD44-positive, CD45-negative, CD49-positive, CD54-positive, CD66b-negative, CD79a-negative, CD80-negative, CD102-positive, CD106-positive, CD117-positive, CD121a-positive, CD121b-positive, CD123-positive, CD124-positive, CD133-negative, CD146-positive, CD166-positive, CD271-positive, B220-negative, Gr1-negative, MHCI-positive, MHCII-negative, SSEA4-negative, sca1-positive, Ter119-negative, and glycophorin A-negative. Cultured MSCs are capable of producing stem cell factor, IL7, IL8, IL11, TGF-beta, cofilin, galectin-1, laminin-receptor 1, cyclophilin A, and MMP-2.

Recruitment

Recruitment Status Recruiting
Estimated number of participants 20
Contact institutions/departments