CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells


Human embryonic stem cells (hESCs) are pluripotent cells that can differentiate into neural cell lineages. These neural populations are usually heterogeneous and can contain undifferentiated pluripotent cells that are capable of producing teratomas in cell grafts. The characterization of surface protein profiles of hESCs and their neural derivatives is important to determine the specific markers that can be used to exclude undifferentiated cells from neural populations. In this study, we analyzed the cluster of differentiation (CD) marker expression profiles of seven undifferentiated hESC lines using flow-cytometric analysis and compared their profiles to those of neural derivatives. Stem cell and progenitor marker CD133 and epithelial adhesion molecule marker CD326 were more highly expressed in undifferentiated hESCs, whereas neural marker CD56 (NCAM) and neural precursor marker (chemokine receptor) CD184 were more highly expressed in hESC-derived neural cells. CD326 expression levels were consistently higher in all nondifferentiated hESC lines than in neural cell derivatives. In addition, CD326-positive hESCs produced teratomas in SCID mouse testes, whereas CD362-negative neural populations did not. Thus, CD326 may be useful as a novel marker of undifferentiated hESCs to exclude undifferentiated hESCs from differentiated neural cell populations prior to transplantation.

Authors Sundberg M, Jansson L, Ketolainen J, Pihlajamäki H, Suuronen R, Skottman H, Inzunza J, Hovatta O, Narkilahti S
Journal Stem cell research
Publication Date 2009 Mar;2(2):113-24
PubMed 19383417
DOI 10.1016/j.scr.2008.08.001

Research Projects

Cell Lines