iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy

Summary

Recent advances in induced pluripotent stem cell (iPSC) technology and directed differentiation of iPSCs into cardiomyocytes (iPSC-CMs) make it possible to model genetic heart disease in vitro. We apply CRISPR/Cas9 genome editing technology to introduce three RBM20 mutations in iPSCs and differentiate them into iPSC-CMs to establish an in vitro model of RBM20 mutant dilated cardiomyopathy (DCM). In iPSC-CMs harboring a known causal RBM20 variant, the splicing of RBM20 target genes, calcium handling, and contractility are impaired consistent with the disease manifestation in patients. A variant (Pro633Leu) identified by exome sequencing of patient genomes displays the same disease phenotypes, thus establishing this variant as disease causing. We find that all-trans retinoic acid upregulates RBM20 expression and reverts the splicing, calcium handling, and contractility defects in iPSC-CMs with different causal RBM20 mutations. These results suggest that pharmacological upregulation of RBM20 expression is a promising therapeutic strategy for DCM patients with a heterozygous mutation in RBM20. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

Authors Briganti F, Sun H, Wei W, Wu J, Zhu C, Liss M, Karakikes I, Rego S, Cipriano A, Snyder M, Meder B, Xu Z, Millat G, Gotthardt M, Mercola M, Steinmetz LM
Journal Cell reports
Publication Date 2020 Sep 8;32(10):108117
PubMed 32905764
PubMed Central PMC8168789
DOI 10.1016/j.celrep.2020.108117

Research Projects

Cell Lines