Dataset for: Modeling chemotherapy induced neurotoxicity with human induced pluripotent stem cell (iPSC)-derived sensory neurons
Summary
Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and potentially irreversible adverse event of cytotoxic chemotherapy. We evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for chemotherapy induced neurotoxicity. Sensory neurons differentiated from two established induced pluripotent stem cell lines were used (s.c. BIHi005-A https://hpscreg.eu/cell-line/BIHi005-A and BIHi004-B https://hpscreg.eu/cell-line/BIHi004-B, Berlin Institute of Health Stem Cell Core Facility). Cell viability and cytotoxicity assays were performed, comparing susceptibility to four neurotoxic and two non-neurotoxic drugs. RNA sequencing analyses in paclitaxel vs. vehicle (DMSO)-treated sensory neurons were performed. Treatment of iPSC-DSN for 24 h with the neurotoxic drugs paclitaxel, bortezomib, vincristine and cisplatin led to a dose dependent decline of cell viability in clinically relevant IC50 ranges, which was not the case for the non-neurotoxic compounds doxorubicin and 5-fluorouracil. RNA sequencing analyses at 24 h, i.e. before paclitaxel-induced cell death occurred, revealed the differential expression of genes of neuronal injury, cellular stress response, and sterol pathways in response to 1 µM paclitaxel. Neuroprotective effects of lithium chloride co-incubation, which were previously shown in rodent dorsal root ganglia, could be replicated in human iPSC-DSN. Cell lines from the two different donors BIHi005-A and BIHi004-B showed different responses to the neurotoxic treatment in cell viability and cytotoxicity assays. © 2021 The Authors.
Authors | Schinke C, Fernandez Vallone V, Ivanov A, Peng Y, Körtvelyessy P, Nolte L, Huehnchen P, Beule D, Stachelscheid H, Boehmerle W, Endres M |
---|---|
Journal | Data in brief |
Publication Date | 2021 Oct;38:107320 |
PubMed | 34485650 |
PubMed Central | PMC8408513 |
DOI | 10.1016/j.dib.2021.107320 |