Generation of GLA-knockout human embryonic stem cell lines to model peripheral neuropathy in Fabry disease


Fabry disease is an X-linked glycolipid storage disorder caused by mutations in the GLA gene which result in a deficiency in the lysosomal enzyme alpha galactosidase A (AGA). As a result, the glycolipid substrate Gb3 accumulates in critical tissues and organs producing a progressive debilitating disease. In Fabry disease up to 80% of patients experience life-long neuropathic pain that is difficult to treat and greatly affects their quality of life. The molecular mechanisms by which deficiency of AGA leads to neuropathic pain are not well understood, due in part to a lack of in vitro models that can be used to study the underlying pathology at the cellular level. Using CRISPR-Cas9 gene editing, we generated two clones with mutations in the GLA gene from a human embryonic stem cell line. Our clonal cell lines maintained normal stem cell morphology and markers for pluripotency, and showed the phenotypic characteristics of Fabry disease including absent AGA activity and intracellular accumulation of Gb3. Mutations in the predicted locations in exon 1 of the GLA gene were confirmed. Using established techniques for dual-SMAD inhibition/WNT activation, we were able to show that our AGA-deficient clones, as well as wild-type controls, could be differentiated to peripheral-type sensory neurons that express pain receptors. This genetically and physiologically relevant human model system offers a new and promising tool for investigating the cellular mechanisms of peripheral neuropathy in Fabry disease and may assist in the development of new therapeutic strategies to help lessen the burden of this disease.

Authors Kaneski CR, Hanover JA, Schueler Hoffman UH
Journal Molecular genetics and metabolism reports
Publication Date 2022 Dec;33:100914
PubMed 36092250
PubMed Central PMC9449667
DOI 10.1016/j.ymgmr.2022.100914

Research Projects

Cell Lines