Rockfish: A transformer-based model for accurate 5-methylcytosine prediction from nanopore sequencing
Summary
DNA methylation plays an important role in various biological processes, including cell differentiation, ageing, and cancer development. The most important methylation in mammals is 5-methylcytosine mostly occurring in the context of CpG dinucleotides. Sequencing methods such as whole-genome bisulfite sequencing successfully detect 5-methylcytosine DNA modifications. However, they suffer from the serious drawbacks of short read lengths and might introduce an amplification bias. Here we present Rockfish, a deep learning algorithm that significantly improves read-level 5-methylcytosine detection by using Nanopore sequencing. Rockfish is compared with other methods based on Nanopore sequencing on R9.4.1 and R10.4.1 datasets. There is an increase in the single-base accuracy and the F1 measure of up to 5 percentage points on R.9.4.1 datasets, and up to 0.82 percentage points on R10.4.1 datasets. Moreover, Rockfish shows a high correlation with whole-genome bisulfite sequencing, requires lower read depth, and achieves higher confidence in biologically important regions such as CpG-rich promoters while being computationally efficient. Its superior performance in human and mouse samples highlights its versatility for studying 5-methylcytosine methylation across varied organisms and diseases. Finally, its adaptable architecture ensures compatibility with new versions of pores and chemistry as well as modification types. © 2024. The Author(s).
Authors | Stanojević D, Li Z, Bakić S, Foo R, Šikić M |
---|---|
Journal | Nature communications |
Publication Date | 2024 Jul 3;15(1):5580 |
PubMed | 38961062 |
PubMed Central | PMC11222435 |
DOI | 10.1038/s41467-024-49847-0 |