Human cone photoreceptor transplantation stimulates remodeling and restores function in AIPL1 model of end-stage Leber congenital amaurosis

Summary

Photoreceptor degeneration is a leading cause of untreatable sight loss. Previously, we showed that human pluripotent stem cell-derived cone photoreceptors (hCones) can rescue retinal function in the Rd1 mouse model of rod-cone dystrophy. However, retinal degenerations display markedly different severities and concomitant remodeling of the remaining retina; for photoreceptor replacement therapy to be broadly effective, it must work for a variety of disease phenotypes. Here, we sought to rescue the Aipl1-/- model of Leber congenital amaurosis, a particularly fast, severe condition. After transplantation of hCones, host cone bipolar cells underwent extensive remodeling and formed nascent synaptic-like connections. Electrophysiological recordings showed robust rescue of light-evoked activity across visually relevant photopic intensities, and treated mice exhibited visually evoked optokinetic head-tracking behavior. Thus, human cone photoreceptor replacement therapy is feasible even in very severe cases of retinal dystrophy, offering promise as a disease-agnostic therapy in Leber congenital amaurosis (LCA) and in other advanced retinal degenerations. Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.

Authors Procyk CA, Melati A, Ribeiro J, Liu J, Branch MJ, Delicata JD, Tariq M, Kalarygrou AA, Kapadia J, Khorsani MM, West EL, Smith AJ, Gonzalez-Cordero A, Ali RR, Pearson RA
Journal Stem cell reports
Publication Date 2025 Apr 8;20(4):102470
PubMed 40154478
PubMed Central PMC12069896
DOI 10.1016/j.stemcr.2025.102470

Research Projects

Cell Lines