Electrophysiological abnormalities in induced pluripotent stem cell-derived cardiomyocytes generated from Duchenne muscular dystrophy patients

Summary

Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease, caused by mutations in the dystrophin gene and resulting in death because of respiratory or cardiac failure. To investigate the cardiac cellular manifestation of DMD, we generated induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (iPSC-CMs) from two DMD patients: a male and female manifesting heterozygous carrier. Dystrophin mRNA and protein expression were analysed by qRT-PCR, RNAseq, Western blot and immunofluorescence staining. For comprehensive electrophysiological analysis, current and voltage clamp were used to record transmembrane action potentials and ion currents, respectively. Microelectrode array was used to record extracellular electrograms. X-inactive specific transcript (XIST) and dystrophin expression analyses revealed that female iPSCs underwent X chromosome reactivation (XCR) or erosion of X chromosome inactivation, which was maintained in female iPSC-CMs displaying mixed X chromosome expression of wild type (WT) and mutated alleles. Both DMD female and male iPSC-CMs presented low spontaneous firing rate, arrhythmias and prolonged action potential duration. DMD female iPSC-CMs displayed increased beat rate variability (BRV). DMD male iPSC-CMs manifested decreased If density, and DMD female and male iPSC-CMs showed increased ICa,L density. Our findings demonstrate cellular mechanisms underlying electrophysiological abnormalities and cardiac arrhythmias in DMD. © 2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

Authors Eisen B, Ben Jehuda R, Cuttitta AJ, Mekies LN, Shemer Y, Baskin P, Reiter I, Willi L, Freimark D, Gherghiceanu M, Monserrat L, Scherr M, Hilfiker-Kleiner D, Arad M, Michele DE, Binah O
Journal Journal of cellular and molecular medicine
Publication Date 2019 Mar;23(3):2125-2135
PubMed 30618214
PubMed Central PMC6378185
DOI 10.1111/jcmm.14124

Research Projects

Cell Lines