Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects

Summary

Derivation of cardiomyocytes from induced pluripotent stem cells (iPS-CMs) allowed us to probe the Ca(2+)-signaling parameters of human iPS-CMs from healthy- and catecholaminergic polymorphic ventricular tachycardia (CPVT1)-afflicted individuals carrying a novel point mutation p.F2483I in ryanodine receptors (RyR2). iPS-CMs were dissociated on day 30-40 of differentiation and patch-clamped within 3-6 days. Calcium currents (ICa) averaged ∼8pA/pF in control and mutant iPS-CMs. ICa-induced Ca(2+)-transients in control and mutant cells had bell-shaped voltage-dependence similar to that of ICa, consistent with Ca(2+)-induced Ca(2+)-release (CICR) mechanism. The ratio of ICa-activated to caffeine-triggered Ca(2+)-transients was ∼0.3 in both cell types. Caffeine-induced Ca(2+)-transients generated significantly smaller Na(+)-Ca(2+) exchanger current (INCX) in mutant cells, reflecting their smaller Ca(2+)-stores. The gain of CICR was voltage-dependent as in adult cardiomyocytes. Adrenergic agonists enhanced ICa, but differentially altered the CICR gain, diastolic Ca(2+), and Ca(2+)-sparks in mutant cells. The mutant cells, when Ca(2+)-overloaded, showed longer and wandering Ca(2+)-sparks that activated adjoining release sites, had larger CICR gain at -30mV yet smaller Ca(2+)-stores. We conclude that control and mutant iPS-CMs express the adult cardiomyocyte Ca(2+)-signaling phenotype. RyR2 F2483I mutant myocytes have aberrant unitary Ca(2+)-signaling, smaller Ca(2+)-stores, higher CICR gains, and sensitized adrenergic regulation, consistent with functionally altered Ca(2+)-release profile of CPVT syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

Authors Zhang XH, Haviland S, Wei H, Sarić T, Fatima A, Hescheler J, Cleemann L, Morad M
Journal Cell calcium
Publication Date 2013 Aug;54(2):57-70
PubMed 23684427
PubMed Central PMC3781932
DOI 10.1016/j.ceca.2013.04.004

Research Projects

Cell Lines