High-Throughput Screening for Modulators of CFTR Activity Based on Genetically Engineered Cystic Fibrosis Disease-Specific iPSCs
Summary
Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl-/I- exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of ∼42,500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modeling can also be utilized for drug screening in a true HT format. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Authors | Merkert S, Schubert M, Olmer R, Engels L, Radetzki S, Veltman M, Scholte BJ, Zöllner J, Pedemonte N, Galietta LJV, von Kries JP, Martin U |
---|---|
Journal | Stem cell reports |
Publication Date | 2019 Jun 11;12(6):1389-1403 |
PubMed | 31080112 |
PubMed Central | PMC6565754 |
DOI | 10.1016/j.stemcr.2019.04.014 |