Monitoring differentiation of human embryonic stem cells using real-time PCR


There is a general lack of rapid, sensitive, and quantitative methods for the detection of differentiating human embryonic stem cells (hESCs). Using light microscopy and immunohistochemistry, we observed that morphological changes of differentiating hESCs precede any major alterations in the expression of several commonly used hESC markers (SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, Oct-4, and Nanog). In an attempt to quantify the changes during stochastic differentiation of hESCs, we developed a robust and sensitive multi-marker quantitative real-time polymerase chain reaction (QPCR) method. To maximize the sensitivity of the method, we measured the expression of up- and downregulated genes before and after differentiation of the hESCs. Out of the 12 genes assayed, we found it clearly sufficient to determine the relative differentiation state of the cells by calculating a collective expression index based on the mRNA levels of Oct-4, Nanog, Cripto, and alpha-fetoprotein. We evaluated the method using different hESC lines maintained in either feeder-dependent or feeder-free culture conditions. The QPCR method is very flexible, and by appropriately selecting reporter genes, the method can be designed for various applications. The combination of QPCR with hESC-based technologies opens novel avenues for high-throughput analysis of hESCs in, for example, pharmacological and cytotoxicity screening.

Authors Noaksson K, Zoric N, Zeng X, Rao MS, Hyllner J, Semb H, Kubista M, Sartipy P
Journal Stem cells (Dayton, Ohio)
Publication Date 2005 Nov-Dec;23(10):1460-7
PubMed 16081663
DOI 10.1634/stemcells.2005-0093

Research Projects

Cell Lines